# Percentage MCQ (Multiple Choice Questions)

A. 83.3
B. 90
C. 80
D. 70

Solution:

Let x be total students in a class.

If there are 70% girls in class, it means 30% are boys.
we can write it as:
⇒ 30% of students in class = 25 boys

The equation will be:
\frac{30}{100}\times x\ =\ 25

Keep the x on left side, and bring other value to right side
it will become,

x\ =\ \frac{25\times100}{30}

x\ =\ \frac{5\times100}{6}

x\ =\ \frac{500}{6}

x=\ 83.3

Hence, There are total 83.3 students in the class.

A. 25%
B. 30%
C. 35%
D. 40%

Solution:

By using Substitution we form an equation

What\ \ \ \ \ Percent\ \ \ \ \ is\ \ \ \ \ \ \frac{3}{12}
\downarrow\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \ \downarrow\
x\ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{100}\ \ \ \ \ \ \ \ \ \ =\ \ \ \ \ \ \frac{3}{12}

x\ \times\frac{1}{100}=\frac{3}{12}

x\ =\frac{3}{12}\times100

x\ =\frac{1}{4}\times100\ \ OR\ \ \frac{300}{12}

x\ =\ 25\%

Hence, 25 percentage is 3/12.

Alternate Method:

Also if the question is given like this: Convert 3/12 into percentage
you can solve it in simple way. Just multiply it with 100 to convert any number in percentage.

x\ =\frac{3}{12}\times100

x\ =\frac{1}{4}\times100\ \ OR\ \ \frac{300}{12}

x\ =\ 25\%

A. 40
B. 38
C. 35
D. 45

Solution:
By using Substitution we form an equation

What\ \ \ is\ \ \ 10\%\ \ \ of\ \ \ 350

\downarrow\ \ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \downarrow\

x\ \ \ \ \ \ \ =\ \ \ \frac{10}{100}\ \ \ \ \times\ \ \ 350

x\ =\frac{10}{100}\times350

x\ =\ \frac{10\ \times350}{100}

x\ =\ \frac{3500}{100}

x\ =\ 35

Hence, 35 is 10 percent of 350.

A. 133
B. 140
C. 130
D. none of these

Solution:

Lets form an equation
8\ \ \ is\ \ \ what\ \ \ percent\ \ \ of\ \ \ 6

\downarrow\ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \downarrow\

8\ \ \ =\ \ \ \ \ \ x\ \ \ \ \ \ \ \ \frac{1}{100}\ \ \ \ \ \times\ \ \ \ \ 6

⇒\ \ 8\ =\ x.\ \frac{1}{100}\times6

⇒\ \ 8\ \times100\ =\ x\times6

⇒\ \ \frac{800}{6}\ =\ x

x\ =\ 133

Hence, 8 is 133 percent of 6.

A. 25%
B. 30%
C. 35%
D. 75%

Solution:

By using Substitution we form an equation
What\ \ \ \ \ Percent\ \ \ \ \ \ of\ \ \ \ \ \ 24\ \ \ \ \ \ \ is\ \ \ \ \ \ 18

\downarrow\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \downarrow\ \ \ \ \ \ \ \ \downarrow\

x\ \ \ \ \ \ \ \ \ \ \ \ \ \frac{1}{100}\ \ \ \ \ \ \ \ \ \ \ \times\ \ \ \ \ \ 24\ \ \ \ \ \ =\ \ \ \ \ \ 18

⇒\ \frac{x}{100}\times24\ =\ 18

⇒\ \ x\ \times24\ =\ 18\ \times100

⇒\ \ x\ =\frac{18\ \times100}{24}

x\ =\ 75\%

Hence, 75% of 24 is 18.

A. 8%
B. 15%
C. 27%
D. 35%

Solution:

The number of candidates who failed in both subjects = Total number of candidates – The number of candidates who passed in both subjects

Candidates passed in English = 80%

Candidates passed in Mathematics = 85%
Candidates passed in both subjects = 73%
Total number of candidates passed = (80+85 -73)

= 92%.

Now,

Candidates failed in both subjects = 100% – 92% = 8%.

Hence, the percentage of candidates who failed in both subjects is 8%.

A. 0.2
B. 0.02
C. 0.005
D. 0.05

Solution:

we know that,

1\%\ =\ \frac{1}{100}

so,

\frac{1}{2}\%\ =\ \frac{1}{2}\ \times\ \frac{1}{100}

\frac{1}{2}\%\ =\ \frac{1}{200}

\frac{1}{2}\%\ = 0.005

Hence, Half percent, written as a decimal, is 0.005.

A. 6%
B. 10%
C. 60%
D. 90%

Solution:

we know the percentage formula;
p\ =\ \frac{x}{n}\ \times100
where,
x = given value
n = total value or amount
p= percentage of given value compared to total

According to the statement,
x = 1.14 and n= 1.9
so,

p\ =\ \frac{1.14}{1.9}\ \times100

p = 60%

Hence, the percentage is 60%.